37,021 research outputs found

    Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection.

    Get PDF
    Leishmania major are intramacrophage parasites whose eradication requires the induction of T helper 1 (Th1) effector cells capable of activating macrophages to a microbicidal state. Interleukin 12 (IL-12) has been recently identified as a macrophage-derived cytokine capable of mediating Th1 effector cell development, and of markedly enhancing interferon gamma (IFN-gamma) production by T cells and natural killer cells. Infection of macrophages in vitro by promastigotes of L. major caused no induction of IL-12 p40 transcripts, whereas stimulation using heat-killed Listeria or bacterial lipopolysaccharide induced readily detectable IL-12 mRNA. Using a competitor construct to quantitate a number of transcripts, a kinetic analysis of cytokine induction during the first few days of infection by L. major was performed. All strains of mice examined, including susceptible BALB/c and resistant C57BL/6, B10.D2, and C3H/HeN, had the appearance of a CD4+ population in the draining lymph nodes that contained transcripts for IL-2, IL-4, and IFN-gamma (and in some cases, IL-10) that peaked 4 d after infection. In resistant mice, the transcripts for IL-2, IL-4, and IL-10 were subsequently downregulated, whereas in susceptible BALB/c mice, these transcripts were only slightly decreased, and IL-4 continued to be reexpressed at high levels. IL-12 transcripts were first detected in vivo by 7 d after infection, consistent with induction by intracellular amastigotes. Challenge of macrophages in vitro confirmed that amastigotes, in contrast to promastigotes, induced IL-12 p40 mRNA. Reexamination of the cytokine mRNA at 4 d revealed expression of IL-13 in all strains analyzed, suggesting that IL-2 and IL-13 may mediate the IL-12-independent production of IFN-gamma during the first days after infection. Leishmania have evolved to avoid inducing IL-12 from host macrophages during transmission from the insect vector, and cause a striking induction of mRNAs for IL-2, IL-4, IL-10, and IL-13 in CD4+ T cells. Each of these activities may favor survival of the organism

    Versatile enzymatic system for the production of guanosine polyphosphates

    Get PDF
    Posters - ED02 Signalling and systems biology: abstract no. ED02/20During periods of environmental stress, bacteria synthesize guanosine tetraphosphate (ppGpp, magic spot I) and guanosine pentaphosphate (pppGpp, magic spot II) in a process known as the stringent response. These intracellular allarmone molecules ‘reprogramme’ the transcriptional and translational machinery to help the cell conserve scarce resources. Existing methods for the production of guanosine polyphosphates are either technically difficult or inefficient, hindering investigations into their biological roles. We have developed a simple and efficient one-step enzymatic method for the production of guanosine polyphosphates using a recombinant protein cloned from Staphylococcus aureus. The purified enzyme efficiently catalyses the formation of pppGpp (and AMP) from GTP + ATP; and ppGpp (and AMP) from GDP + ATP. Notably, it also catalyses the synthesis of pGpp (guanosine 5’-monophosphate 3’-diphosphate, and AMP) from GMP + ATP; albeit with reduced efficiency. The reverse reactions are not catalysed, leading to high conversion rates. Guanosine polyphosphate products can be obtained in a homogeneous form using a combination of anion exchange chromatography followed by desalting. Our approach can be used to produce guanosine polyphosphates on a multi-milligram scale. Furthermore, our results also suggest that a third ‘magic spot’ allarmone may be formed within certain bacterial species.postprintThe Apring 2010 Meeting of the Society for General Microbiology (SGM), Edinburgh, U.K., 29 March-1 April 2010. In Abstract Book of the SGM Spring 2010 Meeting, 2010, p. 9

    The accuracy of several multiple sequence alignment programs for proteins

    Get PDF
    BACKGROUND: There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs. RESULTS: We tested nine of the most often used protein alignment programs and compared their results using sequences generated with the simulation software Simprot which creates known alignments under realistic and controlled evolutionary scenarios. We have simulated more than 30000 alignment sets using various evolutionary histories in order to define strengths and weaknesses of each program tested. We found that alignment accuracy is extremely dependent on the number of insertions and deletions in the sequences, and that indel size has a weaker effect. We also considered benchmark alignments from the latest version of BAliBASE and the results relative to BAliBASE- and Simprot-generated data sets were consistent in most cases. CONCLUSION: Our results indicate that employing Simprot's simulated sequences allows the creation of a more flexible and broader range of alignment classes than the usual methods for alignment accuracy assessment. Simprot also allows for a quick and efficient analysis of a wider range of possible evolutionary histories that might not be present in currently available alignment sets. Among the nine programs tested, the iterative approach available in Mafft (L-INS-i) and ProbCons were consistently the most accurate, with Mafft being the faster of the two

    Growth of anisotropic gold nanoparticles in photoresponsive fluid for UV sensing and erythema prediction

    Get PDF
    Aim: To develop a novel plasmonic nanosensing technique to monitor the exposure levels of UV light for sunlight disease prevention. Methods: Anisotropic gold nanoparticles were grown inside a UV photoresponsive fluid, which was previously exposed to UV radiation from different sources. The morphology and optical properties of the obtained nanoparticles were monitored by spectroscopy and microscopy. Results: The morphological and optical properties of the nanoparticles were dependent on the UV dose. The UV exposure levels were accurately correlated to the UV minimal doses to produce erythema to different skin types. Conclusion: This plasmonic nanosensing technique can be employed as novel sunlight-indexing tool for monitoring the dangerous level of skin exposure

    Antagonistic bioactivity of an endophytic bacterium H-6

    Get PDF
    An endophytic bacterium, H-6, was isolated from leaves of Huperzia serrata grown in the Lushan Mountain, China. The strain was identified as Burkholderia sp. H-6 based on morphological, physiological and biochemical methods as well as on 16S rDNA analysis. This strain inhibited mycelium growth in vitro of 6 plant pathogenic fungi, especially of Phytophthora capsici, Fusarium graminearumt and Sclerotinia libertiana. In greenhouse pot experiments, soil drenches with cell densities of 106, 108 and 1010 CFU ml-1 H-6 reduced significantly P. capsici, in pepper seedling by 51.7, 58.7 and 60.2%, respectively, compared to the inoculated control, 3 weeks after sowing. Growth parameters such as lengths and fresh weights of roots and shoots of P. capsici-inoculated control plants were significantly lower compared to P. capsici-inoculated and H-6-treated plants, which is an added advantage of the strain used as potential biocontrol agent in future.Key words: Endophytic bacterium, 16S rDNA gene, antagonistic activity, Huperzia serrata

    cij: A Python code for quasiharmonic thermoelasticity

    Get PDF
    The Wu-Wentzcovitch semi-analytical method (SAM) is a concise and predictive formalism to calculate the high-pressure and high-temperature (high-PT) thermoelastic tensor (Cij) of crystalline materials. This method has been successfully applied to materials across different crystal systems in conjunction with ab initio calculations of static elastic coefficients and phonon frequencies. Such results have offered first-hand insights into the composition and structure of the Earth's mantle. Here we introduce the cij package, a Python implementation of the SAM-Cij formalism. It enables a thermoelasticity calculation to be initiated from a single command and fully configurable from a calculation settings file to work with solids within any crystalline system. These features allow SAM-Cij calculations to work on a personal computer and to be easily integrated as a part of high-throughput workflows. Here we show the performance of this code for three minerals from different crystal systems at their relevant PTs: diopside (monoclinic), akimotoite (trigonal), and bridgmanite (orthorhombic)

    Visualizing the microscopic coexistence of spin density wave and superconductivity in underdoped NaFe1-xCoxAs

    Full text link
    Although the origin of high temperature superconductivity in the iron pnictides is still under debate, it is widely believed that magnetic interactions or fluctuations play an important role in triggering Cooper pairing. Because of the relevance of magnetism to pairing, the question of whether long range spin magnetic order can coexist with superconductivity microscopically has attracted strong interests. The available experimental methods used to answer this question are either bulk probes or local ones without control of probing position, thus the answers range from mutual exclusion to homogeneous coexistence. To definitively answer this question, here we use scanning tunneling microscopy to investigate the local electronic structure of an underdoped NaFe1-xCoxAs near the spin density wave (SDW) and superconducting (SC) phase boundary. Spatially resolved spectroscopy directly reveal both the SDW and SC gap features at the same atomic location, providing compelling evidence for the microscopic coexistence of the two phases. The strengths of the SDW and SC features are shown to anti correlate with each other, indicating the competition of the two orders. The microscopic coexistence clearly indicates that Cooper pairing occurs when portions of the Fermi surface (FS) are already gapped by the SDW order. The regime TC < T < TSDW thus show a strong resemblance to the pseudogap phase of the cuprates where growing experimental evidences suggest a FS reconstruction due to certain density wave order. In this phase of the pnictides, the residual FS has a favorable topology for magnetically mediated pairing when the ordering moment of the SDW is small.Comment: 18 pages, 4 figure
    corecore